Dictionary Definition
multiplication
Noun
1 an arithmetic operation that is the inverse of
division; the product of two numbers is computed; "the
multiplication of four by three gives twelve"; "four times three
equals twelve" [syn: times]
2 the act of producing offspring or multiplying
by such production [syn: generation, propagation]
3 a multiplicative increase; "repeated copying
leads to a multiplication of errors"; "this multiplication of cells
is a natural correlate of growth"
User Contributed Dictionary
English
Pronunciation
 /ˌmʌltəplɪˈkeɪʃən/, /%mVlt@plI"keIS@n/
 Rhymes: eɪʃǝn
Noun
 In the context of "uncountablearithmeticmathematics": The process of computing the sum of a number with itself a specified number of times, or any other analogous binary operation that combines other mathematical objects.
 In the context of "countablearithmetic": A calculation
involving multiplication.
 The teacher set us ten multiplications as homework.
Translations
process
 Chinese: 乘法 (chéng fǎ)
 Chinese Characters: 乘 / 乗
 Czech: násobení
 Dutch: vermenigvuldiging
 Estonian: korrutamine
 Finnish: kertolasku
 French: multiplication
 German: Multiplikation
 Italian: moltiplicazione
 Japanese: 掛け算 (かけざん, kakezan), 乗法 (じょうほう, jōhō)
 Polish: mnożenie
 Russian: умножение (umnožénije)
 Spanish: multiplicación
 Swedish: multiplikation
 Telugu: గుణకారం (guNakaaram)
 West Frisian: fermannichfâldiging
calculation
Derived terms
Related terms
French
Pronunciation
 lang=fr/myl.ti.pli.ka.sjɔ̃/
 SAMPA: /myl.ti.pli.ka.sjO~/
Noun
multiplication f multiplication (process)
Related terms
Extensive Definition
Multiplication of whole
numbers is the mathematical
operation of adding together multiple copies of the same
number. For example, four multiplied by three is twelve, since
three sets of four make twelve:
 4 + 4 + 4 = 12.\!\,
Multiplication can also be viewed as counting
objects arranged in a rectangle, or finding the
area of rectangle whose
sides have given lengths.
Multiplication is one of four main operations in
elementary
arithmetic, and most people learn basic multiplication algorithms in elementary
school. The inverse of multiplication is division.
Multiplication is
generalized to many kinds of numbers and to more abstract
constructs such as matrices.
Notation and terminology
Multiplication is written using the multiplication sign "×" between the terms; that is, in infix notation. The result is expressed with an equals sign. For example, 2\times 3 = 6 (verbally, "two times three equals six")
 3\times 4 = 12
 2\times 3\times 5 = 30
 2\times 2\times 2\times 2\times 2 = 32
There are several other common notations for
multiplication:
Multiplication is sometimes denoted by either a
middle
dot or a period:
 5 \cdot 2 \quad\text\quad 5\,.\,2
The middle dot is standard in the United
States, the United
Kingdom, and other countries where the period is used as a
decimal
point. In some countries that use a comma
as a decimal point, the period is used for multiplication
instead.
The asterisk (as in 5*2) is often
used in programming
languages because it appears on every keyboard and is easier to
see on older monitors. This usage originated in the FORTRAN programming
language.
In algebra, multiplication
involving variables is
often written as a juxtaposition
(e.g. xy for x times y or 5x for five times x). This notation can
also be used for numbers that are surrounded by parentheses (e.g. 5(2) or
(5)(2) for five times two).
In matrix
multiplication, there is actually a distinction between the
cross and the dot symbols. The cross symbol generally denotes a
vector multiplication, while the dot denotes a scalar
multiplication. A like convention distinguishes between the
cross
product and the dot product
of two vectors.
The numbers to be multiplied are generally called
the "factors" or "multiplicands". When thinking of multiplication
as repeated addition, the number to be multiplied is called the
"multiplicand", while the number of multiples is called the
"multiplier". In algebra, a number that is the multiplier of a
variable or expression (e.g. the 3 in 3xy^2) is called a coefficient.
The result of a multiplication is called a
product,
and is a multiple
of each factor that is an integer. For example 15 is the product of
3 and 5, and is both a multiple of 3 and a multiple of 5.
Computation
The standard methods for multiplying numbers using pencil and paper require a multiplication table of memorized or consulted products of small numbers (typically any two numbers from 0 to 9), however one method, the peasant multiplication algorithm, does not. Many mathematics curricula developed according to the 1989 standards of the NCTM do not teach standard arithmetic methods, instead guiding students to invent their own methods of computation. Though widely adopted by many school districts in nations such as the United States, they have encountered resistance from some parents and mathematicians, and some districts have since abandoned such curricula in favor of traditional mathematics.Multiplying numbers to more than a couple of
decimal places by hand is tedious and error prone. Common
logarithms were invented to simplify such calculations. The
slide
rule allowed numbers to be quickly multiplied to about three
places of accuracy. Beginning in the early twentieth
century, mechanical calculators, such as the
Marchant,
automated multiplication of up to 10 digit numbers. Modern
electronic computers
and calculators have greatly reduced the need for multiplication by
hand.
Historical algorithms
Methods of multiplication were documented in the Egyptian, Greece, Babylonian, Indus valley, and Chinese civilizations.Egyptians
The Egyptian method of multiplication of integers and fractions, documented in the Ahmes Papyrus, was by successive additions and doubling. For instance, to find the product of 13 and 21 one had to double 21 three times, obtaining 1\times 21 = 21, 2\times 21 = 42, 4\times 21 = 84 and 8\times 21 = 168. The full product could then be found by adding the appropriate terms found in the doubling sequence: 13\times 21 = (1 + 4 + 8)\times 21 = (1\times 21) + (4\times 21) + (8\times 21) = 21 + 84 + 168 = 273.
Babylonians
The Babylonians used a sexagesimal positional number system, analogous to the modern day decimal system. Thus, Babylonian multiplication was very similar to modern decimal multiplication. Because of the relative difficulty of remembering 60 × 60 different products, Babylonian mathematicians employed multiplication tables. These tables consisted of a list of the first twenty multiples of a certain principal number n: n, 2n, ..., 20n; followed by the multiples of 10n: 30n 40n, and 50n. Then to compute any sexagesimal product, say 53n, one only needed to add 50n and 3n computed from the table.Chinese
In the books, Chou Pei Suan Ching dated prior to 300 B.C., and the Nine Chapters on the Mathematical Art, multiplication calculations were written out in words, although the early Chinese mathematicians employed an abacus in hand calculations involving addition and multiplication.Indus Valley
The early Hindu mathematicians of the Indus valley region used a variety of intuitive tricks to perform multiplication. Most calculations were performed on small slate hand tablets, using chalk tables. One technique was that of lattice multiplication (or gelosia multiplication). Here a table was drawn up with the rows and columns labelled by the multiplicands. Each box of the table was divided diagonally into two, as a triangular lattice. The entries of the table held the partial products, written as decimal numbers. The product could then be formed by summing down the diagonals of the lattice.Modern method
The modern method of multiplication based on the HinduArabic numeral system was first described by Brahmagupta. Brahmagupta gave rules for addition, subtraction, multiplication and division. Henry Burchard Fine, then professor of Mathematics at Princeton University, wrote the following: ''The Indians are the inventors not only of the positional decimal system itself, but of most of the processes involved in elementary reckoning with the system. Addition and subtraction they performed quite as they are performed nowadays; multiplication they effected in many ways, ours among them, but division they did cumbrously.''
Products of sequences
Capital pi notation
The product of a sequence of terms can be written
with the product symbol, which derives from the capital letter Π (Pi)
in the Greek
alphabet. Unicode position U+220F (∏) contains a glyph for
denoting such a product, distinct from U+03A0 (Π), the letter. The
meaning of this notation is given by:
 \prod_^ x_ = x_ \cdot x_ \cdot x_ \cdot \,\,\cdots\,\, \cdot x_ \cdot x_.
The subscript gives the symbol for a
dummy variable (i in this case), called the "index of
multiplication" together with its lower bound (m), whereas the
superscript (here n) gives its upper bound. The lower and upper
bound are expressions denoting integers. The factors of the product
are obtained by taking the expression following the product
operator, with successive integer values substituted for the index
of multiplication, starting from the lower bound and incremented by
1 up to and including the upper bound. So, for example:
 \prod_^ \left(1 + \right) = \left(1 + \right) \cdot \left(1 + \right) \cdot \left(1 + \right) \cdot \left(1 + \right) \cdot \left(1 + \right) = .
In case m = n, the value of the product is the
same as that of the single factor xm. If m > n, the product is
the empty
product, with the value 1.
Infinite products
One may also consider products of infinitely many
terms; these are called infinite
products. Notationally, we would replace n above by the
lemniscate (infinity symbol) ∞. In the reals, the product of
such a series is defined as the limit
of the product of the first n terms, as n grows without bound. That
is, by definition,
 \prod_^ x_ = \lim_ \prod_^ x_.
One can similarly replace m with negative
infinity, and define:
 \prod_^\infty x_i = \left(\lim_\prod_^0 x_i\right) \cdot \left(\lim_\prod_^n x_i\right),
provided both limits exist.
Interpretation
Cartesian product
The definition of multiplication as repeated addition provides a way to arrive at a settheoretic interpretation of multiplication of cardinal numbers. In the expression \displaystyle a \cdot n = \underbrace_,
if the n copies of a are to be combined in
disjoint union then clearly they must be made disjoint; an obvious
way to do this is to use either a or n as the indexing set for the
other. Then, the members of a \cdot n\, are exactly those of the
Cartesian
product a \times n\,. The properties of the multiplicative
operation as applying to natural numbers then follow trivially from
the corresponding properties of the Cartesian product.
Properties
For integers, fractions, real and complex numbers, multiplication has certain properties: The order in which two numbers are multiplied does not matter:
 x\cdot y = y\cdot x.
 Problems solely involving multiplication are invariant with respect to order of operations:
 (x\cdot y)\cdot z = x\cdot(y\cdot z)
 Holds with respect to addition over multiplication. This identity is of prime importance in simplifying algebraic expressions:
 x\cdot(y + z) = x\cdot y + x\cdot z
 of multiplication is 1; anything multiplied by one is itself. This is known as the identity property:
 x\cdot 1 = x
 Anything multiplied by zero is zero. This is known as the zero property of multiplication:
 x\cdot 0 = 0
 Every number x, except zero, has a multiplicative inverse, \frac, such that x\cdot\left(\frac\right) = 1.
 Multiplication by a positive number preserves order: if a > 0, then if b > c then ab > ac. Multiplication by a negative number reverses order: if a and b > c then ab .
 Negative one times any number is equal to the negative of that number.
 (1)\cdot x = (x)
 Negative one times negative one is positive one.
 (1)\cdot (1) = 1
Other mathematical systems that include a
multiplication operation may not have all these properties. For
example, multiplication is not, in general, commutative for
matrices and quaternions.
Proofs
Not all of these properties are independent; some are a consequence of the others. A property that can be proven from the others is the zero property of multiplication. It is proven by means of the distributive property. We assume all the usual properties of addition and subtraction, and −x means the same as 0 − x.\begin & \qquad x\cdot 0 \\ & = (x\cdot
0) + x  x \\ & = (x\cdot 0) + (x\cdot 1)  x \\ & = x\cdot
(0 + 1)  x \\ & = (x\cdot 1)  x \\ & = x  x \\ & = 0
\end
So we have proven:
 x\cdot 0 = 0
The identity
(−1) · x = −x
can also be proven using the distributive property:
\begin & \qquad(1)\cdot x \\ & =
(1)\cdot x + x  x \\ & = (1)\cdot x + 1\cdot x  x \\ &
= (1 + 1)\cdot x  x \\ & = 0\cdot x  x \\ & = 0  x \\
& = x \end
The proof that
(−1) · (−1) = 1
is now easy:
\begin & \qquad (1)\cdot (1) \\ & =
(1) \\ & = 1 \end
Multiplication with Peano's axioms
 In the book Arithmetices principia, nova methodo exposita, Giuseppe Peano proposed a new system for multiplication based on his axioms for natural numbers.

 a\times 1=a
 a\times b'=(a\times b)+a
Multiplication with set theory
It is possible, though difficult, to create a
recursive definition of multiplication with set theory. Such a
system usually relies on the peano definition of
multiplication.
Multiplication in group theory
It is easy to show that there is a group for
multiplication the nonzero rational numbers. Multiplication with
the nonzero numbers satisfies
 Closure  For all a and b in the group, a×b is in the group.
 Associativity  This is just the associative property: (a×b)×c=a×(b×c)
 Identity  This follows straight from the peano definition. Anything multiplied by one is itself.
 Inverse  All nonzero numbers have a multiplicative inverse.
Multiplication also is an abelian
group, since it follows the commutative property.
a×b=b×a
Multiplication of different kinds of numbers
Numbers can count (3 apples), order (the 3rd
apple), or measure (3.5 feet high); as the history of mathematics
has progressed from counting on our fingers to modelling quantuum
mechanics, multiplication has been generalized to more complicated
and abstract types of numbers, and to things that aren't numbers
(such as matrices)
or don't look much like numbers (such as quaternions).
 Integers N\times M is the sum of M copies of N when N and M are positive whole numbers. This gives the number of things in an array N wide and M high. Generalization to negative numbers can be done by (N\times M) =  (N\times M).
 Rationals Generalization to fractions \frac\times \frac is by multiplying the numerators and denominators respectively: \frac\times \frac = \frac. This gives the area of a rectangle \frac high and \frac wide, and is the same as the number of things in an array when the rational numbers happen to be whole numbers.
 Complex Considering complex numbers z_1 and z_2 as ordered pairs or real numbers (a_1, b_1) and (a_2, b_2), the product z_1\times z_2 is (a_1\times a_2  b_1\times b2, a_1\times b_2 + a_2\times b_1). This is the same as for reals, a_1\times a_2, when the imaginary parts b_1 and b_2 are zero.
 Further generalizations See above and Multiplicative Group, which for example includes matrix multiplication. A very general, and abstract, concept of multiplication is as the "multiplicatively denoted" (second) binary operation in a ring. An example of a ring which is not any of the above number systems is polynomial rings (you can add and multiply polynomials, but polynomials are not numbers in any usual sense.)
 Division Often division \frac is the same as multiplication by an inverse, x\left(\frac\right). Multiplication for some types of "numbers" may have corresponding division, without inverses; in an Integral domain x may have no inverse "\frac" but \frac may be defined. In a Division ring there are inverses but they are not commutative (since \left(\frac\right)\left(\frac\right) is not the same as \left(\frac\right)\left(\frac\right), \frac may be ambiguous).
See also
 Multiplicative inverse, the reciprocal
 Multiplication
algorithm
 Karatsuba algorithm, method for large numbers
 ToomCook algorithm, method for very large numbers
 SchönhageStrassen algorithm, method for huge numbers
 Multiplication table (times table)
 Multiplication ALU, how computers multiply
 Napier's bones
 Peasant multiplication
 Product (mathematics)  lists generalizations
 Slide rule
Notes
References
 History of Mathematics
External links
multiplication in Arabic: ضرب
multiplication in Catalan: Multiplicació
multiplication in Czech: Násobení
multiplication in Danish: Multiplikation
multiplication in German: Multiplikation
multiplication in Spanish: Multiplicación
multiplication in Esperanto: Multipliko
multiplication in Persian: ضرب (ریاضی)
multiplication in French:
Produit_(mathématiques)
multiplication in Scottish Gaelic:
Iomadachadh
multiplication in Croatian: Množenje
multiplication in Korean: 곱셈
multiplication in Icelandic: Margföldun
multiplication in Italian: Moltiplicazione
multiplication in Lithuanian: Daugyba
multiplication in Dutch: Vermenigvuldigen
multiplication in Japanese: 乗法
multiplication in Norwegian:
Multiplikasjon
multiplication in Norwegian Nynorsk:
Multiplikasjon
multiplication in Polish: Mnożenie
multiplication in Portuguese:
Multiplicação
multiplication in Quechua: Miray
multiplication in Russian: Умножение
multiplication in Simple English:
Multiplication
multiplication in Slovak: Násobenie
multiplication in Finnish: Kertolasku
multiplication in Swedish: Multiplikation
multiplication in Tagalog: Multiplikasyon
multiplication in Thai: การคูณ
multiplication in Turkish: Çarpma
multiplication in Yiddish: טאפלונג
multiplication in Chinese: 乘法
Synonyms, Antonyms and Related Words
access,
accession, accretion, accrual, accruement, accumulation, addition, advance, aggrandizement, amplification, appreciation, approximation, ascent, augmentation, ballooning, begetting, bloating, boom, boost, breeding, broadening, buildup, crescendo, crossbreeding, development, differentiation,
dissogeny, division, edema, elevation, endogamy, engenderment, enlargement, equation, evolution, expansion, extension, extrapolation, flood, fructification, gain, generation, greatening, growth, gush, hike, inbreeding, increase, increment, inflation, integration, interpolation, inversion, involution, jump, leap, linebreeding, mounting, multiple, multiplication table,
multiplier, multiplying, notation, outbreeding, practice, procreation, production, productiveness, proliferation, prolification, propagation, proportion, pullulation, raise, reduction, reproduction, rise, snowballing, spread, subtraction, surge, swelling, tables, transformation, tumescence, up, upping, upsurge, upswing, uptrend, upturn, waxing, widening, xenogamy